Cytotoxic Indole Alkaloid 3α-Acetonyltabersonine Induces Glioblastoma Apoptosis via Inhibition of DNA Damage Repair
نویسندگان
چکیده
Cytotoxic indole alkaloids from Melodinus suaveolens, which belongs to the toxic plant family Apocynaceae, demonstrated impressive antitumor activities in many tumor types, but less application in glioblastoma, which is the lethal brain tumor. In the present study, we reported the anti-glioblastoma activity of an indole alkaloid, 3α-acetonyltabersonine, which was isolated from Melodinus suaveolens. 3α-acetonyltabersonine was cytotoxic to glioblastoma cell lines (U87 and T98G) and stem cells at low concentrations. We verified 3α-acetonyltabersonine could suppress tumor cell proliferation and cause apoptosis in glioblastoma stem cells (GSCs). Moreover, detailed investigation of transcriptome study and Western blotting analysis indicated the mitogen activated protein kinase (MAPK) pathway was activated by phosphorylation upon 3α-acetonyltabersonine treatment. Additionally, we found 3α-acetonyltabersonine inhibited DNA damage repair procedures, the accumulated DNA damage stimulated activation of MAPK pathway and, finally, induced apoptosis. Further evidence was consistently obtained from vivo experiments on glioblastoma mouse model: treatment of 3α-acetonyltabersonine could exert pro-apoptotic function and prolong the life span of tumor-bearing mice. These results in vitro and in vivo suggested that 3α-acetonyltabersonine could be a potential candidate antitumor agent.
منابع مشابه
Thymoquinone Induces Telomere Shortening, DNA Damage and Apoptosis in Human Glioblastoma Cells
BACKGROUND A major concern of cancer chemotherapy is the side effects caused by the non-specific targeting of both normal and cancerous cells by therapeutic drugs. Much emphasis has been placed on discovering new compounds that target tumour cells more efficiently and selectively with minimal toxic effects on normal cells. METHODOLOGY/PRINCIPAL FINDINGS The cytotoxic effect of thymoquinone, a...
متن کاملThe Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملCorrigendum: Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival
DNA repair gene defects are found in virtually all human glioblastomas, but the genetic evidence for a direct role remains lacking. Here we demonstrate that combined inactivation of the XRCC4 non-homologous end-joining (NHEJ) DNA repair gene and p53 efficiently induces brain tumours with hallmark characteristics of human proneural/classical glioblastoma. The murine tumours exhibit PTEN loss of ...
متن کاملProton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species
Glioblastoma multiforme (GBM) is among the most lethal of human malignancies. Most GBM tumors are refractory to cytotoxic therapies. Glioma stem cells (GSCs) significantly contribute to GBM progression and post-treatment tumor relapse, therefore serving as a key therapeutic target; however, GSCs are resistant to conventional radiation therapy. Proton therapy is one of the newer cancer treatment...
متن کاملNuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma
Glioblastoma is the most malignant and lethal subtype brain tumors with high risk of recurrence and therapeutic resistance. Emerging evidence has indicated that glycogen synthesis kinase 3 (GSK3)β plays oncogenic roles in multiple tumor types; however, the underlying mechanisms remain largely unknown. It has also been demonstrated that p53 binding protein 1 (53BP1) plays a central role in DNA d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017